
Optimal Register Reassignment for Register
Stack Overflow Minimization

YOONSEO CHOI and HWANSOO HAN

Korea Advanced Institute of Science and Technology

Architectures with a register stack can implement efficient calling conventions. Using the over-

lapping of callers’ and callees’ registers, callers are able to pass parameters to callees without a

memory stack. The most recent instance of a register stack can be found in the Intel Itanium

architecture. A hardware component called the register stack engine (RSE) provides an illusion of

an infinite-length register stack using a memory-backed process to handle overflow and underflow

for a physically limited number of registers. Despite such hardware support, some applications

suffer from the overhead required to handle register stack overflow and underflow. The memory

latency associated with the overflow and underflow of a register stack can be reduced by generat-

ing multiple register allocation instructions within a procedure [Settle et al. 2003]. Live analysis

is utilized to find a set of registers that are not required to keep their values across procedure

boundaries. However, among those dead registers, only the registers that are consecutively located

in a certain part of the register stack frame can be removed. We propose a compiler-supported

register reassignment technique that reduces RSE overflow/underflow further. By reassigning reg-

isters based on live analysis, our technique forces as many dead registers to be removed as possible.

We define the problem of optimal register reassignment, which minimizes interprocedural regis-

ter stack heights considering multiple call sites within a procedure. We present how this problem

is related to a path-finding problem in a graph called a sequence graph. We also propose an effi-

cient heuristic algorithm for the problem. Finally, we present the measurement of effects of the

proposed techniques on SPEC CINT2000 benchmark suite and the analysis of the results. The

result shows that our approach reduces the RSE cycles by 6.4% and total cpu cycles by 1.7% on

average.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compiler;

code generation; optimization; C.1.2 [Processor Architectures]: Multiple Data Stream Archi-

tectures (Multiprocessors)—multiple-instruction-stream, multiple-data-stream processors; C.5.3

[Computer System Implementation]: Microcomputers

General Terms: Algorithms, Languages, Performance

Additional Key Words and Phrases: Register assignment, register allocation, register stack, se-

quence graph

Authors’ address: Yoonseo Choi and Hwansoo Han, Division of Computer Science, Korea Advanced

Institute of Science and Technology (KAIST), 373-1 Guseong-Dong, Yuseong-Gu, Daejeon 305-701,

Korea; email: yschoi@arcs.kaist.ac.kr, hshan@cs.kaist.ac.kr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or direct commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515

Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1544-3566/06/0300-0090 $5.00

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006, Pages 90–114.

Optimal Register Reassignment for Register Stack Overflow Minimization • 91

1. INTRODUCTION

Memory latency frequently limits the performance of applications, despite the
advances and innovations in modern architectures. Smart register allocators
can play an important role in reducing the number of register spills/fills, which
are intrinsically load/store operations. Typical register allocators focus on the
reduction of register spills/fills within a procedure boundary. Another important
issue in register allocation, however, exists regarding procedure boundaries.
When a new procedure is invoked, all the live local registers used in current
procedure must be saved in memory. When the procedure returns to the caller,
the caller can resume its execution after restoring the register context from
the memory. Many researchers investigated register allocation techniques to
reduce the memory access penalty associated with procedure calls [Wall 1986;
Chow 1988; Steenkiste and Henessy 1989; Kurlander and Fisher 1996; Lueh
and Gross 1997].

Microarchitectural solutions to this problem can be found in many commer-
cial microprocessors. Providing large physical register files and maintaining
them in register windows [Weaver and Germond 1994] or register stack [Intel
Corporation 2002] can mitigate the overhead of register saves/restores around
procedure boundaries. The SPARC architecture allocates a register window per
procedure which consists of 24 registers [Weaver and Germond 1994]. First,
eight registers are used for procedure arguments (in-registers). The next eight
registers are used for local registers for the current procedure (local-registers).
The last eight registers are used to pass arguments to callee procedures (out-
registers). Caller’s out-registers are overlapped with callee’s in-registers. The Ita-
nium architectures provide a more flexible mechanism called a register stack,
using a special instruction (alloc) that can control the sizes of in/local/out-
registers for each procedure [Intel Corporation 2002].

Both the register stack and register window offer a fast argument-passing
mechanism among procedures. More importantly, they can reduce the over-
head of register saves/restores on procedure calls that typically otherwise re-
quire memory accesses. Hardware-managed register stacks and register win-
dows are key components, which provide the illusion of the infinite length of
registers by automatically backing up and reloading the contents of physical
registers from the memory without the explicit intervention of software. One
of the current trends in microprocessors is to equip them with large physi-
cal registers though the number of visible registers from applications is fixed.
Both the register stack and register window can benefit from large physical
register files by having to back up and reload the contents of registers less fre-
quently. Dynamically resizing the register stack frame can further circumvent
a significant amount of register spill/fill overhead involved in the register stack
overflow and underflow. Settle et al. [2003] proposed a multi-alloc technique,
which generates multiple register allocation instructions to reduce the register
stack height of all procedures in the call stack. Since there is a limited number
of physical registers, for example, 96 in the case of Itanium, those reductions in
the register stack height can subsequently lead to reductions in register stack
overflow and underflow. The key idea is that nonlive registers across calls over-
lap with the callee’s register stack frame. Register liveness analysis is used

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

92 • Y. Choi and H. Han

to distinguish the registers that can be overlapped. Although Settle et al. pro-
vided a great deal of useful evidence that an overlapping register stack frame
would lead to register stack engine(RSE) overhead reduction, their method
takes advantage of only the nonlive registers at the end of the local-register
region.

We found that carefully distributing registers to proper parts of the local-
register region helps to reduce the register stack height by enlarging the
number of the overlapped dead registers. Our method also generates multi-
ple register allocation instructions within a procedure. However, we devised
a compiler-supported register reassignment scheme to maximize the overlap
with the callee’s register stack frame. In particular, our scheme considers mul-
tiple call sites within a procedure for the overall minimization of the register
stack height. Our contributions are as follows.

1. We define the problem of finding the optimal register reassignment that
minimizes the register stack height of all procedures in the call stack, con-
sidering multiple call sites within a procedure.

2. We formulate the optimal register reassignment problem as the path-finding
problem in a graph called sequence graph and show the equivalency of the
two problems.

3. We also propose a heuristic algorithm to solve the problem.

The remainder of this paper is organized as follows. Section 2 presents back-
ground information on the register stack. Section 3 explains how we exploit
register reassignment to minimize the register stack height interprocedurally.
The section goes on to define the problem of optimal register reassignment and
describe how the problem is related to sequence graphs. Section 4 presents our
register reassignment algorithms based on path-finding on a sequence graph.
Finally, Section 5 reports on the experimental results and analysis.

2. BACKGROUND

The Itanium architectures provide 128 general-purpose registers (r0–r127),
which are virtual registers visible to applications. First 32 registers (r0 to
r31) are global registers visible to all procedures; the remaining 96 registers
(r32–r127) are stacked registers that are locally accessible within a procedure.
Among the 96 stacked registers, a procedure claims a portion of them for use
within the procedure. The actual number of physical registers for a register
stack is usually larger than the number of virtual stacked registers. A register
stack consists of those physical registers and the register stack engine (RSE).
The stacked registers claimed by a procedure are mapped on to physical regis-
ters; we call them the register stack frame for that procedure.

Each register stack frame is grouped into three parts: (1) in-registers for in-
coming parameters from callers, (2) local-registers for the current procedure’s
use during its lifetime, and (3) out-registers for output parameters passed to
callees. Rotating-registers, which are used for software-pipelined loops, are op-
tionally selected among in-registers and local-registers. The size of the register
stack frame is often determined at the beginning of procedure by invoking a

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

Optimal Register Reassignment for Register Stack Overflow Minimization • 93

Fig. 1. Mapping a register stack frame to a physical register file, when f () calls g ().

Fig. 2. The overflow and underflow of registers by RSE when x, y , and z are called in order: (a)

example procedures x, y , and z ; (b) after y is called; (c) after z is called, four of the x ’s registers

overflow; (d) after y returns, four of the x ’s registers underflow.

special instruction, alloc. The format of the instruction is

alloc <targ reg> = ar.pfs, in, local, out, rot

where ar.pfs is a special register to save the previous state [Intel Corporation
2002]. The total number of registers in the register stack frame for a procedure
is #in-registers + #local-registers + #out-registers ≤ 96, with conditions of #in-
register ≤ 8 and #out-registers ≤ 8.

To provide uniform accesses to its stacked register frame, the starting regis-
ter of each register stack frame is remapped to r32 and the following registers
are also remapped in order. The mapping between virtual registers and physical
registers is illustrated in Figure 1, where procedure f calls g . The parameters
are passed from f to g through the overlapping of the out-registers of f and the
in-registers of g . The register stack engine (RSE) manages the mapping of reg-
ister stack frame to physical registers in a circular manner [Intel Corporation
2002]. If multiple register stack frames use up all the physical registers, RSE
overflows some of the stacked registers to a backing store in memory. When re-
turning from a procedure, the previous register stack frame must be restored.
If there are any overflowed registers, the RSE underflows the requested regis-
ters back to the physical registers from the backing store. Figure 2 shows how
RSE overflows and underflows registers as procedures are called and return.
(The overlapping of the caller’s register stack frame with the callee’s is ignored
for ease of description. We assume the size of a physical register file is 96.) In

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

94 • Y. Choi and H. Han

Fig. 3. Avoidance of the overflow/underflow of registers by utilizing multiple alloc instructions.

Figure 2a, procedure x calls y , y calls z. Procedures x, y , and z allocate 40, 30,
and 30 stacked registers, respectively. Suppose that the register stack is con-
figured, as shown in Figure 2b, when y is called by x. The register stack frame
of the current active procedure is denoted with a gray box. When z is called
by y , four of x ’s registers overflow and are stored in memory by RSE to keep
z ’s registers in the physical register file. When z and y return subsequently,
the four registers of x are restored from the backing store for further execution
of x.

Now we demonstrate how we can avoid the overflows and underflows of
registers by generating multiple register allocation instructions. If we insert
additional alloc instructions before x calls y and y calls z, as in Figure 3a,
none of the x ’s registers overflow when z is called, because the total of registers
allocated by x, y , and z does not exceed 96 (refer to Figure 3b). By carefully
analyzing the liveness of registers, additional alloc instructions can reduce the
total height of the register stack frames.

3. THE OVERFLOW-MINIMIZING REGISTER REASSIGNMENT

To determine the size of the register stack frame, procedures often start with
alloc instructions. Suppose procedure f allocates nine stacked registers, r32
through r40, (in-registers: r32, r33, local-registers: r34 to r38, out-registers:
r39, r40), as shown in Figure 4a and b. When f calls g , the out-registers of f
overlap the in-registers of g , as shown in Figure 4b. Figure 4c illustrates multi-
alloc method in [Settle et al. 2003]. Equipped with careful live register analysis,
the register stack frame of f can be reduced by issuing another alloc instruction
before calling g , which removes two dead local-registers, r37 and r38, and
reassigns two output registers, r39 and r40, to r37 and r38, respectively. This
resizing of f ’s register stack frame decreases the register stack height for f
and g by 2.

Now suppose f calls another procedure h besides g , as shown in Figure 4d.
We can still add alloc instruction before calling g . However, before calling h, we
cannot reduce the register stack frame of f in spite of dead local-register r37.
If we reassign some of the local-registers of f , for example, by interchanging
r35 and r36 and interchanging r37 and r38, we can reduce f ’s register stack
frame before calling both g and h, which leads to the reduction of the over-
all register stack height by 3 and 1 (refer to Figure 4f). This example clearly
reveals the effect of register reassignment on the overall register stack height

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

Optimal Register Reassignment for Register Stack Overflow Minimization • 95

Fig. 4. Register stack height reduction: the resizing of the register stack frame and the effect of

register reassignment.

reduction when there is more than one call site in a procedure. We observe
that, by scanning from the last local-register (i.e. the local-register that has
the biggest number among all local-registers) to the first local-register, we can
eliminate the registers one by one from the current register stack frame while
these registers are dead. Once we encounter a live local-register, we stop the
scanning, even though there are more dead local-registers beyond it. We can
only remove those scanned dead local-registers that are consecutively located
at the end region of local-registers. Thus, pushing dead registers toward the end
of the local-register region is a key concept to further reduce current register
stack frame.

According to the calling convention, out-registers naturally overlap with the
callee’s register stack frame and in-registers convey parameters passed by

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

96 • Y. Choi and H. Han

callers of current procedures. The only candidates for safe reassignment are
local-registers. For these local-registers, all virtual register names are mutu-
ally interchangeable. However, when a procedure uses rotating-registers for
software pipelining, not all local-registers are interchangeable. We excluded
the procedures that use rotating-registers from our optimization. Once we find
one-to-one interchange mapping among local-registers, we can safely reassign
local-registers that result in more overlaps. The rest of this section discusses
(1) how we define optimal register reassignment, and (2) how we convert the
register reassignment problem to a graph problem.

3.1 Optimal Register Reassignment

For a procedure P , if there are k call sites C1, C2, · · ·, Ck then the set of registers
which are dead before the call site Ci (or unused until that point) is denoted as
dead set Di. Dead set Di has weight w(Di) according to the relative importance
of the call site Ci. Let L = {r1, r2, · · · , rl } be the set of local-registers of the
register stack frame for P . We now want to find a sequence S, s1 → s2 → · · · →
sl , si ∈ L, 1 ≤ i ≤ l , of all stacked registers in L, which maximizes G:

G =
k∑

i=1

gain(S, Di) =
k∑

i=1

gain(sl , Di) , (1)

gain(sj , Di) =
⎧⎨
⎩

w(Di) + gain(sj−1, Di) if sl ∈ Di, j = l
w(Di) + gain(sj−1, Di) if sj+1 ∈ Di and sj ∈ Di, 1 ≤ j ≤ l − 1
0 otherwise

When the original sequence of local-registers S0 is r1 → r2 → · · · → rl , we
map the ith register in S0 to the ith register in the new sequence S, (1 ≤ i ≤ l);
then we find this bijective function RA : L → L as our register reassignment.
The gain of the register reassignment RA is G given in Eq. (1).

Equation (1) represents the observation that the register stack frame can be
overlapped from the right end until it encounters the first live register in the
sequence. The reason why we can overlap only the right side of the sequence is
that register frames for procedures are maintained in the form of a stack. We
can stack up a new register frame on top of the current frame, which means
a new register frame can be overlapped only with the right end of the current
register sequence. The meaning of the gain(S, Di) is the number of registers
that can be overlapped at call site Ci. The total gain, G, is a plain sum of all the
gains at all call sites in the procedure P .

For example, suppose a procedure has three call sites and their dead sets
are D1 = {r45, r46, r48}, D2 = {r43, r45, r48}, and D3 = {r43, r45}, where
w(D1) = w(D2) = w(D3) = 1 and the set of all stacked registers in local region
L = {r42, r43, · · · , r48}. The gain of a sequence, S = r42 → r44 → r46 →
r47 → r43 → r45 → r48, is then computed to be 5. For the first call site, we
can overlap only the last two registers (gain(S, D1) = 2). For the second call
site, we can overlap the last three registers from the sequence (gain(S, D2) = 3).
Finally, for the third call site, none of the registers in the sequence is overlapped
(gain(S, D3) = 0). One thing to note is that only the suffix of S, which consists

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

Optimal Register Reassignment for Register Stack Overflow Minimization • 97

Fig. 5. An example of a sequence graph.

of dead registers matters. The order of the remaining registers is irrelevant to
the total gain.

The optimal register reassignment is the register assignment that maximizes
the gain in Eq. (1).

3.2 Optimal Register Reassignment Using Sequence Graphs

Our register reassignment is more easily tackled by relating it to a graph opti-
mization problem, as shown in Figure 5. Converting the original problem into a
graph problem gives us more insight on how to solve our problem. To find a reg-
ister reassignment that produces maximum gain, we attempted to maximize
the number of overlapped registers not just in one dead set, but in all dead sets.
Since we can overlap with dead registers from the right end of a sequence, we
tried all possible permutations of dead registers in all dead sets of all call sites.
That means we attempted to find a permutation that results in the maximum
total gain.

Now, using an example, we explain how we convert our problem to an equiv-
alent graph problem. Figure 5 a shows three dead sets D1, D2, and D3 from
our previous example, where a function f calls g1, g2, and g3 at three call
sites C1, C2, and C3, respectively. w(D1) = w(D2) = w(D3) = 1. In Figure 5b,
complete graphs for dead sets D1, D2, and D3 are shown. Any possible sequence
of the registers of each dead set can be represented as a path on each complete
graph. The weights of nodes and edges are 1 according to the weight of the
corresponding dead sets. The superimposition of the three complete graphs is
shown in Figure 5c, where the edges from complete graph D1 are denoted by
dotted lines, from D2 by solid lines, and from D3 by a heavy line. When we com-
pose a superimposed graph, the weight of each node is the sum of the weights
from all original graphs.

Recall that, in the previous example, we picked the sequence S = r42 →
r44 → r46 → r47 → r43 → r45 → r48 ending with r43 → r45 → r48. In
D1, only r45 and r48 can be overlapped from the local part of the register stack
frame, since r46 does not appear consecutively with the other dead registers,
r45 and r48, in the sequence. Whereas, r43, r45, and r48 in D2 can all be
overlapped since all of them appear consecutively at the end of the sequence.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

98 • Y. Choi and H. Han

In D3, no register is overlapped, and, as a result, we could reduce register stack
frame by 2 and 3 before call site C1 and C2, respectively.

Turning to our graph notations, on the complete graph of D1, we select the
path r48 → r45. On the complete graph of D2, we select the path r48 → r45 →
r43. Note the orders of the registers in the paths: they are in the reverse order
of sequence S. Projecting the paths to the superimposed graph in Figure 5c
and adding the weights of the first node r48 and the following edges, (r48, r45)
and (r45, r43), we obtain 5 = 2 + (1 + 1) + 1, which is the same as the total
gain (in Eq. 1) of the sequence S mentioned above. Note that for edge (r45,
r43), we added only 1, the weight of D2, excluding that of D3. Dead set D3 does
not have r48, the first node of the path r48 → r45 → r43, i.e. the last local
register of the sequence S. As mentioned in the prior section, only the dead
registers at the right end of local-registers can be overlapped. Translating into
the superimposed graph notation, only the edges that are part of the path so
far are counted. A heavy line does not appear between r48 and r45.

From the above example, we infer that we can calculate the gain of a register
reassignment using a corresponding sequence on a superimposed graph. The
superimposed graph, as shown in Figure 5c, is a multigraph that has multiple
edges between two nodes. To simplify the graph, we construct a sequence graph
G(V , E), where V = D1∪D2∪· · ·∪Dk , and E = {(u, v) : u ∈ Di and v ∈ Di, 1 ≤ i ≤
k}. The weight of a node u, w(u), is the sum of the weights from all the complete
graphs the node u belongs to, where weights of complete graphs are determined
by the weights of their associated dead sets. An edge (u, v) has an annotation,
denoted by a(u, v), which is set of all dead sets where the edge belongs. Figure 5d
shows an example of a sequence graph composed from the dead sets listed in
Figure 5a. Recall that w(D) denotes the weight of a dead set D.

On sequence graphs, we need to find a node-sequence that results in maxi-
mum gain. We formally define a node-sequence as follows.

Let a sequence of nodes NS = v1 → v2 → · · · → vq , (q ≤ |V |) be node-sequence
from a sequence-graph G(V , E). NS has the following properties.

(1) ∀ 1 ≤ i ≤ q − 1, edge (vi, vi+1) ∈ E and,

(2) The gain of NS is defined as

gain of NS = w(v1) +
q−1∑
i=1

w(Ai ∩ a(vi, vi+1)) (2)

where

⎧⎨
⎩

A1 = U (i.e. set of all given dead sets)
Ai+1 = Ai ∩ a(vi, vi+1), i = 1, · · · , q − 1
w(A) = ∑

∀D∈A w(D), for any set A of dead sets

The first property is a trivial condition that ensures that the sequence forms
a path on G(V , E). The second property defines the gain of a node sequence.
Each dead set can have a path composed of nodes in its complete graph. The
definition implies that only the dead sets whose paths begin with the starting
node of the node sequence contribute to the gain. In other words, the gain of an
NS in a sequence graph is the sum of the weights of each path, which is part of
NS in each complete graph.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

Optimal Register Reassignment for Register Stack Overflow Minimization • 99

Algorithm 1 reassign register()

Input : Dead sets, D1, D2, · · · , Dk , for all call sites in a procedure P .
Output : A sequence of nodes.

1: G(V , E) ⇐ sequence graph composed from D1, D2, · · · , Dk .
2: NS(SV,SE) ⇐ φ /* node sequence start with empty graph */
3: (u, v) ⇐ edge with the biggest gain, (u, v) ∈ V , w(u) ≥ w(v)
4: SV = SV ∪ {u, v}, SE = SE ∪ {(u, v)} /* insert (u, v) to NS */
5: A ⇐ a(u, v)
6: t ⇐ v
7: while SV contains less than |V | nodes do
8: Find (t, v) which has the biggest w(A ∩ a(t, v)), where (s, t) ∈ SE and v /∈ SV.
9: if no such (t, v) exists then

10: break
11: end if
12: SE = SE ∪ {(t, v)}, SV = SV ∪ {v} /* append (t, v) to NS */
13: A ⇐ A ∩ a(t, v)
14: t ⇐ v
15: end while
16: return reverse(NS) /* put the heaviest weight node at the end of the sequence */

To find an optimal node-sequence, we select a sequence of maximum gain
among all such sequences. Since the overlapped dead registers are relevant to
the gain, we can focus only on dead registers at each call site. Once we find such a
node-sequence of dead registers on a sequence graph, we reverse it as we select
the right-most dead register first for the node-sequence. We then arbitrarily
build a sequence holding the rest of the local-registers. We finally concatenate
the two sequences, putting the sequence of the dead registers in the back. The
resulting sequence can now be used to guide the register reassignment. In
Section 4, we will describe how to find a maximum gain node-sequence from
sequence graphs using a greedy approach. Formal proof of the equivalency
between finding an optimal register reassignment and finding a maximum gain
node-sequence is also given in the Appendix.

4. ALGORITHM

We propose an algorithm to find the optimal register reassignments defined
in Section 3. Our approach to solve this problem is to find the maximum gain
nodesequences on the sequence graphs introduced in Section 3.2. An efficient
heuristic is detailed in the following sections.

4.1 reassign register and multi alloc insert

Our proposed algorithm, called reassign register, is based on a greedy approach.
The input to reassign register is the dead sets (D1, D2, · · · , Dk) of a procedure.
From D1, D2, · · · , Dk , we build a corresponding sequence graph G and then
construct a node-sequence by appending one edge at a time. Our algorithm
starts with a node-sequence NS that contains only one edge (u, v) whose gain
in Eq. (2) is the greatest among all edges in G. At each iteration of the while
body, we examine all the adjacent nodes to the end node of the NS so far and
pick the node that increases the gain of NS most. This is described in line
8 of Algorithm 1. Note that we preserve Eq. (2) for computing the gain of a

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

100 • Y. Choi and H. Han

Fig. 6. An example illustrating each stage of edge addition to build a node-sequence.

node-sequence during iterations. Thus, the resulting gain of Algorithm 1 equals
the gain of the original problem in Eq. (1). Algorithm 1 contains a sketch of
reassign register.

Figure 6 shows an example of reassign register step-by-step. In Figure 6a,
there are four distinct dead sets. The registers in each dead set are given sim-
ple names, such as a, b, · · · , f , for ease of description. The number after a dead
set indicates the weight of the dead set. Figure 6b shows the superimposition
of four complete graphs from D1, D2, D3, and D4, while Figure 6c shows the
resulting sequence graph. Figure 6d through g illustrate each step to find the
maximum gain node-sequence. At first, edge (a, e) is chosen since it has the
biggest gain, 16 (= w(a) + w(U ∪ a(a, e)) = 9 + (3 + 4)). A is a(a, e) = {D1, D2}.
The node-sequence is a → e since w(a) ≥ w(e). Then, we examine all nodes adja-
cent to node e, i.e., b, c, d , and f . For b, (A = a(a, e))∩a(e, b) = {D1, D2}∩{D2, D4}
= {D2}, and w({D2}) = 4. Similarly, for c, w(A ∩ a(e, c)) = w({D2}) = 4, and for

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

Optimal Register Reassignment for Register Stack Overflow Minimization • 101

Algorithm 2 multi alloc insert()

input : Optimized code of a procedure P after register allocation
output : Register stack optimized code with multiple alloc instructions.

1: Let D be the set of all dead sets in P , D = φ.
2: for all call site C in P do
3: Calculate dead set D for call site C.
4: if D ∈ D then
5: w(D) = w(D) + w(C) /* w(C) denotes the weight of call sites C. */
6: else
7: w(D) = w(C)
8: D = D ∪ {D}
9: end if

10: end for
11: N̂S = reassign register(D) /* N̂S is a reversed node-sequence */
12: Let L be set of local registers of P .

13: S ⇐ arbitrarily concatenate all nodes in L − V (N̂S) before N̂S.
14: Reassign local registers used in P using S.
15: for all call site C in P do
16: Let D be the dead set of call site C.

17: if decide to resize based on N̂S, D then
18: Insert alloc and copy parameters. /* Resize register stack before and after

19: C using N̂S, D */
20: end if
21: end for

d , w(A∩ a(e, d)) = w({D1}) = 3, respectively. For f , A∩ a(e, f) = φ. Among the
two biggest gain nodes b and c, we arbitrarily pick b. Now the nodesequence is
a → e → b, and its gain is 16 + 4 = 20. A = A ∩ a(e, b) = {D2}. In the next
step, at b, among adjacent nodes a, c, e, and f , we pick c since A∩a(b, c) = {D2}
and a and e are already in the node sequence so far. The node sequence is now
a → e → b → c(gain = 24 = 20 + w({D2})) and A = {D2}. Finally, at c our algo-
rithm stops because a, e, b are already in the node-sequence and A ∩ a(c, d) =
φ. The resulting node-sequence is a → e → b → c, and its gain is 24.

Note that we can come up with a simpler heuristic than reassign register()
in which we only consider how many times a register appears in the dead
sets (namely, node frequency). We sort nodes in the all dead sets in nonin-
creasing order of node frequencies, and then the result will produce a se-
quence of nodes. With this heuristic, the example in Figure 6 can result in
a → e → c → d → b → f . The gain of this sequence is 20 (= 9 + 7 + 4), which
is less than 24, the gain we can obtain from reassign register(). This simple
heuristic has some advantages over reassign register(). It does not a build se-
quence graph, but simply counts the frequency of each node. As a result, it has
lower time complexity than that of reassign register(), but generally produces
less optimized register reassignments.

Algorithm 2 shows how we use the multi-alloc method. The optimized code
of a procedure after register allocation is given as an input. First, we gather all
the dead sets in a procedure, assigning a weight to each dead set. We can treat
all call sites equally and give the same weight to all the corresponding dead

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

102 • Y. Choi and H. Han

sets. Alternatively, we can use profiling information to weight each dead set
in favor of its relative importance, like the frequency of calls of the associated
call site. The weight of a dead set becomes the weights of the nodes in the
dead set. With weighted dead sets, we obtain register reassignment for local-
registers from reassign register(). After we interchange local-register names by
the register reassignment, we insert multiple alloc instructions wherever they
are necessary. The alloc instructions inserted to resize the register stack frame
also require the copying of the procedure parameters from the old out-registers
to the new out-registers since we change the boundaries of local-registers and
out-registers.

4.2 Algorithm Efficiency

We implement sequence graphs (G(V , E)) as adjacent lists. We represent an-
notations on edges as bit vectors where every dead set is encoded with one bit.
Then, given dead sets, D1, D2, · · ·, Dk , computing the gain of an intersection is
able to run in time O(k). Thus, for each iteration of while body of Algorithm 1, we
are able to compute the node with the biggest gain in O(k · |V |), asymptotically.
Since O(|V |) times of iterations occur, the while loop takes O(k ·|V |2) time, in to-
tal. In constructing a sequence graph, to superimpose each dead set’s complete
graph, we first implement a sequence graph as an adjacent matrix and then
convert it to the corresponding adjacent list. It takes O(k ·|Dmax|2 +|V |2), where
Dmax is the dead set of maximum cardinality among D1, D2, · · ·, Dk . We adopt
this approach to tackle both the building of a sequence graph and the finding
of a node sequence efficiently. Overall, the time complexity of reassign register
is bound by O(k · |Dmax|2 + k · |V |2).

5. EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Experimental Environments

We perform our experiments on an Intel Itanium2 box with two 1.4GHz Ita-
nium2 processors and a 1.5M L2 cache, running a 64bit version of RedHat
Linux. We used the Open Research Compiler(ORC) with base optimization,
which employs Itanium specific optimizations, such as if-conversion, data and
control speculation, predicate analysis, and global instruction scheduling with
resource management, etc., including, all classic optimizations [Intel Corpora-
tion and Chinese Academy of Sciences 2002]. We implemented our multi-alloc
method that utilizes reassign register described in Section 4 in ORC after its last
register allocation. We also implemented multiple alloc optimization without
considering the reassignment of local registers as in Settle et al. [2003], for the
purpose of comparison. Their multi-alloc scheme also resizes the register stack
frame before the call sites. Nonlive registers across calls are overlapped with the
callee’s register stack frame. Register liveness analysis is used to distinguish
those registers that can be overlapped. However, only the nonlive registers at
the end of the local-register region can be overlapped. Our technique also uti-
lizes multiple alloc instructions to resize the register stack frame before the
call sites, but our technique pushes more nonlive registers toward the end of

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

Optimal Register Reassignment for Register Stack Overflow Minimization • 103

the local-register region by reassigning registers in order to force more dead
registers to overlap with the callee’s register stack frame. For convenience, we
call our scheme RR-multi-alloc, which stands for register reassigning multi-alloc,
while we call Settle et al.’s multi-alloc. We used the SPEC CINT2000 benchmarks
to evaluate the effectiveness of our approach.

5.2 Implementation Details

To resize the register stack at a call site, two alloc instructions are required
before and after a call site. In addition, procedure parameters from a caller
to callee should be reassigned before the call site. Refer to Figure 4, which
demonstrates the reduction of the register stack height. Output registers r39
and r40 holding parameters from function f to g in Figure 4a are reassigned
to r37 and r38, respectively, as in Figure 4b. Currently, we implement these
reassignments by mov instructions. Some nop instructions are also added for
bundling the alloc and mov instructions. Those alloc and mov instructions are
pure overheads. To avoid the overheads’ hiding the benefit from the reduction in
the register stack height, we used thresholds. If the number of overlapped reg-
isters falls below a certain number or the number of reassigned output registers
is above another certain number, we do not multi-alloc the call site. For our ex-
periments, our threshold was 3 to 4 for the number of overlapped registers and
0 to 6 for the output procedure parameters. By through data-flow analysis of
the live ranges of registers, the number of the allocs augmented in a procedure
(i.e., a caller) can be minimized. Also, the mov for reassigning procedure param-
eters and nop for bundling instructions can be minimized if our register reas-
signment more fully cooperates with the instruction selection and the register
allocation.

Note that our optimization can be profile-guided by giving the more weight
to the more significant call sites when we build a sequence graph. We can take
a couple of approaches in deciding the relative importance of each call site. In
the simplest way, the frequency of the calls of a call site can be used as the
weight. Alternatively, if it is possible to pinpoint where the overflow occurs, we
can utilize the chain of the calls that causes the overflow for the purpose of
differentiating call sites in a procedure. At this time, our experiments are not
based on profiling information, and all call sites in a procedure have the same
weight.

5.3 Characteristics of Benchmarks

5.3.1 Call Sites Characteristics. Table I lists the static and dynamic char-
acteristics of the call sites of SPEC CINT2000 programs. The second and third
columns show static numbers of the total call sites and average numbers of call
sites per procedure, respectively. The fourth column shows the average per-
centages of call sites per procedure where RR-multi-alloc is applied. We found
SPEC CINT2000 benchmarks have about nine static call sites in a procedure
on average. When our RR-multi-alloc is used, about 40% of those call sites resize
default register stack frames. One extreme case is crafty, which has about 30
call sites in a procedure, and which is about three times more than average.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

104 • Y. Choi and H. Han

Table I. Characteristics of SPEC CINT2000: Numbers of Procedure Call Sites in

Program and Per Procedure

(Static) (Static) (Static) (Dynamic) (Dynamic)

in per alloc-site alloc-site maximum

Benchmarks program procedure percentage percentage call depth

gzip 254 4.98 40% 0.2% 12

vpr 1514 8.96 47% 1.7% 11

gcc 17822 10.80 40% 41.8% 35

mcf 54 6.75 36% 0.2% 34

crafty 405 29.42 55% 83.0% 33

parser 1214 5.62 30% 24.4% 73

perlbmk 5775 6.72 40% 10.2% 54

gap 3576 6.62 47% 10.5% 362

vortex 8097 9.32 37% 28.4% 28

bzip2 254 5.52 39% 0.0% 8

twolf 611 8.04 45% 21.8% 9

Avg. 3598 9.34 41% 20.0% 60

Our multi-alloc scheme with register reassignment resizes the register stack
frame for more than one half of those call sites.

The fifth column shows the dynamic percentage of calls where RR-multi-alloc
is applied. We traced the call sites of the entire execution in support of GNU
compiler toolchain’s function instrumentation. Then, we counted the call sites
matched by ORC’s multi-alloced call sites. Unlike the static percentages be-
tween 30 to 55% over all benchmarks, the dynamic percentages of alloc-site
show wide variations among benchmarks. Benchmarks with high dynamic per-
centage, such as gcc, crafty, twolf, and vortex, show some improvement in per-
formance (see later, Table V and Figure 9). Although vpr and mcf showed up to
4 and 1.5% improvement, their dynamic percentages of alloc-site are low. These
low percentages are partly from the loss of information. Gcc generates instru-
mentation calls just after a function entry and just before the function exit in
the callee’s body, while alloc instructions are added before and after a call site
in the caller’s body. For vpr and mcf, many of the alloced call sites are calls to
library functions, which are not captured by Gcc’s instrumentation. Finally, the
sixth column shows the maximum call depth of each benchmark.

5.3.2 Stacked Registers Characteristics. Figure 7 shows the characteristics
of the stacked registers of SPEC CINT2000 programs. The first bar represents
the average numbers of stacked registers allocated in a procedure (in/local/out-
registers). The second bar shows the average numbers of dead stacked regis-
ters (in/local/out-registers) that are unused before at least one call site. The
third bar shows the average numbers of dead local-registers among those total
dead stacked registers (in/local/out-registers) shown in the second bar. These
dead local-registers are the potential candidates for overlapping to resize stack
frames. All the results are obtained with the ORC using base optimization. The
total number of stacked registers is about 12, which is far less than the allowed
number of registers, 96. Among the stacked registers, we found about six reg-
isters that are dead at the call sites. Although one-half of the stacked registers
are dead at the call sites, four or five registers out of six dead registers are

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

Optimal Register Reassignment for Register Stack Overflow Minimization • 105

Fig. 7. Static numbers of registers per procedure for SPEC CINT2000.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

106 • Y. Choi and H. Han

Table II. Run-Time Performance: RSE Cycles

Base (% of RSE cycles

Benchmarks in total cpu cycles) Multi-alloc RR-multi-alloc

gzip 8.918×106 (0.003%) 8.723×106 8.176×106

vpr 2.672×107 (0.008%) 2.647×107 2.234×107

gcc 6.629×109 (2.885%) 5.602×109 4.197×109

mcf 4.579×107 (0.003%) 4.576×107 4.575×107

crafty 8.587×109 (4.841%) 8.577×109 7.692×109

parser 2.052×109 (0.400%) 2.509×109 1.996×109

perlbmk 4.883×109 (1.295%) 5.805×109 5.760×109

gap 3.537×108 (0.130%) 3.295×108 3.466×108

vortex 3.027×109 (0.854%) 2.767×109 2.668×109

bzip2 1.898×108 (0.058%) 1.899×108 1.897×108

twolf 5.929×109 (0.972%) 5.900×109 5.927×109

out-registers, which already overlap with the callee’s register stack frame. Only
one or two registers are dead among the local-registers. The register allocator
in ORC is an integration of the approaches of Chow [Chow 1988; Chow and
Hennessy 1984] and Chaitin-Briggs [Chaitin 1982; Briggs et al. 1994]. Chow’s
global allocator utilizes cost and saving estimates for assigning a variable into
a register within a local code block in deciding on a node to color. Caller-saved
and callee-saved registers each have their own respective merits under differ-
ent circumstances. Chow’s register allocator computes different priorities with
respect to the register classes and assigns each program variable to the best
register class [Chow 1988]. The register allocator in ORC classifies stacked
registers into stacked callee-save and stacked caller-save. The former is used
for live registers across call sites and is allocated in in/local-register regions.
Meanwhile, the latter is mainly for a scratch pad, not live across call sites
and allocated in out-register region. Hence, the current register allocator in
ORC already, to some degree, overlap not-live (dead) registers with the next
register stack frame by assigning them in the out-register region. On top of
the ORC register allocation, our technique overlaps more dead registers in the
local-registers region with the callee’s register stack frame by reassigning the
local-registers.

The fourth and fifth bars show the average numbers of local-registers which
overlap with the callee’s register stack frame using multi-alloc and RR-multi-
alloc, respectively. The multi-alloc scheme overlaps only a one-third of the dead
local-registers. Our sophisticated RR-multi-alloc scheme, which exploits register
reassignment considering multiple call sites, can overlap 90% of dead local-
registers.

5.4 Runtime Performance

5.4.1 Reduction in RSE Overhead. Using the performance monitoring unit
in the Itanium architecture, we measured the cpu cycles spent due to RSE.
Table II compares RSE cycles using the ORC with base optimization, multi-
alloc, and our RR-multi-alloc. The second column presents RSE cycles when we
use the base ORC. The ratio of those RSE cycles to the total cpu cycles is shown
in parentheses. The corresponding RSE cycles by multi-alloc and RR-multi-alloc

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

Optimal Register Reassignment for Register Stack Overflow Minimization • 107

Fig. 8. The percentage of reduction in RSE cycles when multi-alloc and RR-multi-alloc are used,

respectively.

are shown in the third and fourth columns, respectively. Figure 8 illustrates
the reductions of the RSE cycles in percentages compared with the RSE cycles
from the base ORC.

Our RR-multi-alloc results in sizable reduction in RSE cycles for every bench-
mark program, besides perlbmk. Furthermore, RR-multi-alloc achieves a three
times larger reduction than multi-alloc on average. Particularly, for vpr and
crafty, RR-multi-alloc reduces RSE cycles by 16 and 10%, respectively, while
multi-alloc reduces RSE cycles only by 0.9 and 0.1%. For gcc, though multi-alloc
already results in 15% reductions, RR-multi-alloc boosts the reductions up to
37%.

For perlbmk, both RR-multi-alloc and multi-alloc increase the RSE overhead.
For gap and twolf, RR-multi-alloc reduces the RSE overhead less than multi-
alloc. Generating more alloc instructions does not always lead to reductions in
register overflow/underflow since the reduction of register stack heights in one
part of a call sequence can unfortunately cause the increase of register over-
flow/underflow in other parts of the sequence. In addition, the RSE hardware
can exploit the explicit register stack frame information to eagerly spill and fill
registers from the register stack to memory at the best opportunity indepen-
dent of the calling and called procedures [Intel Corporation 2002]. We think
that such implicit RSE behavior and the unfortunate situation described above
may cause the result for perlbmk, gap, and twolf.

For all benchmark programs, RR-multi-alloc and multi-alloc reduce RSE cycles
on average by 6.4 and 1.4% points, respectively.

5.4.2 Increase in the Number of Total Instructions. We also measured the
number of retired instructions using the performance monitoring unit of the

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

108 • Y. Choi and H. Han

Table III. Numbers of Retired IA64 Instructions (Including NOP)

increase over ORC (%)

Benchmarks base multi-alloc RR-multi-alloc multi-alloc RR-multi-alloc

gzip 5.959×1011 5.959×1011 5.959×1011 0.001% 0.001%

vpr 3.429×1011 3.431×1011 3.433×1011 0.059% 0.102%

gcc 3.031×1011 3.043×1011 3.075×1011 0.417% 1.448%

mcf 1.364×1011 1.364×1011 1.364×1011 0.000% 0.000%

crafty 3.059×1011 3.059×1011 3.066×1011 0.000% 0.227%

parser 6.844×1011 6.869×1011 6.880×1011 0.369% 0.517%

perlbmk 7.986×1011 7.986×1011 7.987×1011 0.000% 0.018%

gap 4.397×1011 4.399×1011 4.404×1011 0.053% 0.155%

vortex 5.514×1011 5.527×1011 5.517×1011 0.252% 0.069%

bzip2 5.333×1011 5.333×1011 5.333×1011 0.000% 0.000%

twolf 7.467×1011 7.467×1011 7.467×1011 0.001% 0.003%

Avg. 0.105% 0.231%

Table IV. Numbers of Retired NOP Instructions

increase over ORC (%)

Benchmarks base multi-alloc RR-multi-alloc multi-alloc RR-multi-alloc

gzip 1.349×1011 1.349×1011 1.349×1011 0.003% 0.003%

vpr 1.072×1011 1.073×1011 1.074×1011 0.104% 0.201%

gcc 9.335×1010 9.421×1010 9.624×1010 0.927% 3.100%

mcf 4.571×1010 4.571×1010 4.571×1010 0.000% 0.000%

crafty 7.019×1010 7.019×1010 7.073×1010 0.000% 0.768%

parser 2.222×1011 2.223×1011 2.224×1011 0.786% 1.096%

perlbmk 1.945×1011 1.945×1011 1.946×1011 −0.003% 0.061%

gap 1.340×1011 1.342×1011 1.345×1011 0.131% 0.370%

vortex 1.430×1011 1.438×1011 1.423×1011 0.571% −0.421%

bzip2 1.421×1011 1.421×1011 1.421×1011 0.000% 0.000%

twolf 3.218×1011 3.218×1011 3.218×1011 0.002% 0.004%

Avg. 0.229% 0.471%

Itanium architecture. Table III presents the numbers of retired instructions,
including NOP, for base ORC, multi-alloc and RR-multi-alloc. Table IV shows
the numbers of retired NOP instructions. In order to resize the register stack
frame for one call site, two alloc instructions are needed before and after the
call site. Besides alloc instructions, a few mov instructions are needed before
each alloced call site for the purpose of copying procedure parameters to the
new end of the resized register stack frame from the original end of the de-
fault one. Some nop instructions are also added for bundling those alloc and
mov instructions. Thus, both RR-multi-alloc and multi-alloc usually execute more
instructions than base ORC. Comparing RR-multi-alloc and multi-alloc, RR-multi-
alloc usually executes more instructions than multi-alloc since it inserts more
allocs to resize the register stack frame than multi-alloc (recall Figure 4 in which
some call sites are alloced after a proper register reassignment that cannot be
alloced originally). Note that the number of added mov and/or nop instructions
for a call site is determined solely by the number of procedure parameters and
the bundling capability of the scheduler. Reassigning registers(RR-multi-alloc)
does not incur more mov and/or nop instructions for the same call site than
multi-alloc.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

Optimal Register Reassignment for Register Stack Overflow Minimization • 109

Table V. Run-Time Performance: Total CPU Cycles

Benchmarks base multi-alloc RR-multi-alloc

gzip 2.699×1011 2.693×1011 2.693×1011

vpr 3.521×1011 3.380×1011 3.377×1011

gcc 2.298×1011 2.253×1011 2.240×1011

mcf 1.315×1012 1.301×1012 1.298×1012

crafty 1.774×1011 1.776×1011 1.736×1011

parser 5.068×1011 5.099×1011 5.079×1011

perlbmk 3.770×1011 3.808×1011 3.774×1011

gap 2.719×1011 2.684×1011 2.678×1011

vortex 3.534×1011 3.507×1011 3.474×1011

bzip2 3.274×1011 3.274×1011 3.234×1011

twolf 6.101×1011 5.889×1011 5.834×1011

Fig. 9. The percentage of reduction in the total cpu cycles when multi-alloc and RR-multi-alloc are

used, repectively.

5.4.3 Reduction in the Total cpu Cycles. We also measured the total exe-
cution cycles using the performance monitoring unit of Itanium architecture.
Table V shows the performance of base ORC, multi-alloc, and RR-multi-alloc in
terms of total cpu cycles. Figure 9 illustrates the percentage of reductions in
the total cpu cycles of multi-alloc and RR-multi-alloc over base ORC, respectively.
Our RR-multi-alloc improves the performance of every benchmark program, ex-
cept for parser and perlbmk. For most programs, the performance gains are
more than the percentage of the RSE cycles from the base ORC, which are
shown in Table II. According to the cycle breakdowns, both multi-alloc and
RR-multi-alloc reduce not only RSE cycles, but also other portions of the cy-
cle breakdown, such as data access latency and back-end stalls because of
front-end stalls. We think the sharing of limited memory bandwidth between

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

110 • Y. Choi and H. Han

the register stack overflow/underflow and data access causes the reduction
in other portions of cycle breakdown. We improve performance by combining
the reduction in RSE cycles and the reductions in other portions of the cycle
breakdown.

Vpr and twolf show great performance improvements for both RR-multi-alloc
and multi-alloc, although their percentages of RSE cycles are quite low. These
improvements are largely due to the reductions in front-end stalls. For crafty,
which has the highest RSE percentage among all programs at 4.8%, RR-multi-
alloc achieves a performance gain of 2.14%. Reductions in RSE cycles, data-
access stalls, and back-end stalls because of front-end stalls jointly contribute
to the reduction in the total cpu cycles. On the other hand, multi-alloc slightly
increases total cpu cycles by 0.14% due to the increase in number of retired in-
structions and an increase in other portions of the cycle breakdown. For crafty,
register reassignment greatly affects reduction in register overflow/underflow.
For gcc, as a whole, a 2.54% reuction in the total cpu cycles is achieved with
our RR-multi-alloc. Referring to Tables II and V, around 40% of that total re-
duction is from the reduction in RSE cycles. RR-multi-alloc also outperforms
multi-alloc, which reduces the total cpu cycles by 1.95%. For parser, an increase
in the numbers of instructions for instrumenting call sites together with a low
percentage of RSE cycles in the total cpu cycles causes overall performance
degradation (refer to Tables III and IV for increases in instructions). The in-
crease in cpu cycles for perlbmk is due to an increase in RSE cycles and the
number of retired instructions. Overall, RR-multi-alloc reduces the total cpu cy-
cles 1.71%, on average, while multi-alloc reduces the total cpu cycles 1.01%, on
average.

6. RELATED WORKS

Douillet et al. [2002] first proposed a multi-alloc method to minimize the over-
head associated with RSE spill/fill. They analyzed the stack register usage per
basic block and captured the multiple control flows within a procedure that use
different numbers of stacked registers. By inserting alloc into multiple places
in a procedure and resizing the register stack frame differently for different
paths, they could reduce the stacked register usage along some paths. Their
scheme, however, did not yield satisfactory results.

Settle et al. [2003] proposed another multi-alloc scheme that resizes the reg-
ister stack frame before call sites in order to reduce the total height of the
stack frames over all procedures in the call stack. The key idea is nonlive
registers across calls overlap with the callee’s register stack frame. Register
liveness analysis is used to distinguish registers that can be overlapped. Al-
though, Settle et al. provided a great deal of useful evidence that an overlap-
ping register stack frame would lead to RSE overhead reduction, their scheme
only takes advantage of the nonlive registers at the end of the local-register
region.

Hoflehner et al. [2004] discuss how the register stack optimization technique
attributes to the performance of on-line transaction processing (OLTP). They
implemented the multi-alloc method of Settle et al. [2003] in the Intel C/C++

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

Optimal Register Reassignment for Register Stack Overflow Minimization • 111

Itanium compiler. They report that the RSE optimization reduced RSE
spills/fills by about 4% and increased throughput by 1.15%.

Weldon et al. [2002] examined various RSE optimizations techniques with
dynamic register usage and dead register evaluation information because of
imbalanced paths of applications’ execution. They simulated heap-based RSE
implementation, unlike the original stack-based RSE in the Itanium architec-
ture, in order to fully take advantage of that profile information, which assumed
nonoverlapping frames between the callers and callees.

Yang et al. [2003] proposed a method that decides upon the appropriate
quota of stacked registers for each procedure. Their approach is not based on
the multi-alloc method, but has the same goal to reduce the overhead of the RSE
spill/fill. Yang et al. analyzed a call graph and used a cost model in order to find
the trade-off between explicit register spills and the usage of stacked registers
managed by the RSE. They observed that reducing the stacked register usage in
some procedures could reduce the total memory access time of spilling registers.
Using their quota allocation method, perlbmk, which originally spent 23% of
the total execution time in RSE, spent around 0% of the cycles in the RSE. They
also reported a 13% performance improvement for perlbmk.

Our method presented in this paper follows the multi-alloc method used in
the work of Settle et al. However, our work is different in that we have devised a
register reassignment scheme to maximize the overlap with the callee’s register
stack frame. In particular, our scheme considers multiple call sites within a
procedure for the overall minimization of the register stack height. Moreover,
we defined the problem of finding optimal register reassignment and formulated
it as a path-finding problem in a graph called a sequence graph. We also proposed
an efficient heuristic algorithm to solve the problem.

7. CONCLUSION

Hardware managed register stacks or register windows are good design choices,
considering that we have enough space to place a large number of physical reg-
isters on processor chips, but have only a limited number of virtual registers
due to the encoding space on the instruction set architectures. For better sup-
port for a hardware managed register stack, we apply compiler-assisted register
reassignment. Given that multiple alloc instructions are supported in a proce-
dure, we can also freely resize the register stack frame multiple times within a
procedure. Utilizing both register-reassignment and resizing the register stack
frame, we achieve the maximal overlapping of the dead local registers between
procedure call boundaries. Since our register-reassignment approach is applied
after the register-allocation phase, we introduce minimal changes on existing
compiler structures, widening the opportunities for any compilers to adopt our
scheme for register stack optimizations.

According to our experiment with SPEC CINT2000, our approach reduces
RSE cycles by 6.4% and the total cpu cycles by 1.7%, on average. For crafty and
gcc, which have high RSE overheads of around 4.8 and 2.9%, respectively, when
base ORC is used, our approach achieves considerable RSE cycle reductions by
10.4 and by 36.7%, along with total cycle reduction by 2.1 and 2.5%, respectively.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

112 • Y. Choi and H. Han

APPENDIX

We claim that the gain of a node-sequence on a sequence graph is the same
as the gain of the register reassignment. Let D1, D2, · · ·, Dk denote dead sets
of a procedure and L be the set of all stack registers in local region. Then an
instance of overflow-minimizing register reassignment problem is denoted as
(D1, D2, · · · , Dk , L, R A), where RA is a bijective register reassignment map-
ping from L to L. On the other hand, (D1, D2, · · · , Dk , L, N S) denotes an in-
stance of maximum gain node-sequence finding problem in the sequence graph
of D1, D2, · · · , Dk .

Given an RA of (D1, D2, · · · , Dk , L, R A), there is a sequence S = s1 → · · · →
sl , (l = |L|) of all stacked registers in L by the definition of the register reas-
signment. Furthermore, for each Di (1 ≤ i ≤ k) there is a suffix of S, denoted
by sufSi = sm → · · · → sl , where sm, · · · , sl ∈ Di and sm−1 /∈ Di if sm−1 exists in
S. Then, from Eq. (1), gain(S, Di) = gain(sufSi, Di), (1 ≤ i ≤ k). Let sufSmax be
the longest among all sufSi, 1 ≤ i ≤ k. The implied NS of RA is the reversal of

sufSmax, denoted as sufSmax.

THEOREM A.1. Given (D1, D2, · · · , Dk , L, R A) and (D1, D2, · · · , Dk , L, N S),
if NS is implied from RA, the gain G of RA in Equation (1) is the same as the
gain of NS in Equation (2).

PROOF. Suppose sufSi, (1 ≤ i ≤ k) is sm → sm+1 → · · · → sl−1 → sl , (1 ≤ m ≤
l). By Equation (1), for 1 ≤ i ≤ k,

gain(S, Di) = gain(sufSi, Di) = w(Di) · (l − m + 1)

where w(Di) denotes the weight of a dead set Di.

The reversion of sufSi, sufSi, can be represented as a path in the complete graph
of Di. For every node and edge of the complete graph of Di, its weight is w(Di).
Thus,

(The sum of the weights of path sufSi in the complete graph of Di)

= wi(sl) + wi(sl , sl−1) + · · · + wi(sm+1, sm)

= w(Di) + w(Di) + · · · + w(Di)

= w(Di) · (l − m + 1) ,

where wi(v) denotes the weight of node v in the complete graph of Di.
Thus, for all 1 ≤ i ≤ k,

gain(S, Di) = (The sum of weights of path sufSi in the complete graph of Di)

The sequence graph of D1, D2, · · ·, Dk is composed from the superimposition of
all complete graph of D1, D2, · · · , Dk . From Eq. (2) and the above result,

gain of sufSmax

=
k∑

i=1

(The sum of weights of path sufSi in the complete graph of Di)

=
k∑

i=1

gain(S, Di)

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

Optimal Register Reassignment for Register Stack Overflow Minimization • 113

Conversely, the implied RA of NS in (D1, D2, · · · , Dk , L, NS) is defined as
follows: concatenate all registers in L − V (NS) after NS in arbitrary order,
where V(NS) is the set of all nodes in NS; let S be the reversal of the resulting
sequence; implied RA of NS is determined from S by the definition of the register
reassignment.

THEOREM A.2. Given (D1, D2, · · · , Dk , L, RA) and (D1, D2, · · · , Dk , L, NS), if
RA is implied from NS, the gain of NS is the same as the gain G of RA.

The proof of Theorem A.2 is similar to that of Theorem A.1 and is omit-
ted. Theorems A.1 and A.2 indicate that we can solve the problem of overflow-
minimizing register reassignment by translating it into the problem of finding
a maximum gain node-sequence on a sequence graph.

ACKNOWLEDGMENTS

This research was supported by the MIC (Ministry of Information and Commu-
nication), Korea, under the ITRC (Information Technology Research Center)
support program supervised by the IITA (Institute of Information Technology
Assessment). (IITA- 2005-C1090-0502-0031)

REFERENCES

BRIGGS, P., COOPER, K., AND TORCZON, L. 1994. Improvements to graph coloring register allocation.

ACM Transactions on Programming Languages and Systems 16, 3, 428–425.

CHAITIN, G. 1982. Register allocation and spilling via graph coloring. In Proceedings of the SIG-
PLAN’82 Symposium on Compiler Construction. 201–207.

CHOW, F. 1988. Minimizing register usage penalty at procedure calls. In Proceedings of the SIG-
PLAN’88 Conference on Programming Language Design and Implementation. 85–94.

CHOW, F. AND HENNESSY, J. 1984. Register allocation by priority-based coloring. In Proceedings of
the SIGPLAN’84 Symposium on Compiler Construction. 222–232.

DOUILLET, A., AMARAL, J., AND GAO, G. 2002. Fine-grained stacked register allocation for the ita-

nium architecture. In 15th Workshop on Languages and Compilers for Parallel Computing.

HOFLEHNER, G., KIRKEGAARD, K., SKINNER, R., LAVERY, D., AND LEE, Y. 2004. Compiler optimiza-

tions for transaction processing workloads on itanium linux systems. In Proceedings of the 37th
International Symposium on Microarchitecture. 294–303.

Intel Corporation 2002. Intel Itanium Architecture Software Developer’s Manual. Intel Corpora-

tion, Santa Clara, CA.

Intel Corporation and Chinese Academy of Sciences 2002. Open Research Compiler for Ita-
nium Processor Family (ORC version 2.1). Intel Corporation and Chinese Academy of Sciences,

http://ipf-orc.sourceforge.net.

KURLANDER, S. AND FISHER, C. 1996. Minimum cost interprocedural register allocation. In Pro-
ceedings of the 23rd SIGPLAN-SIGACT Symposium on Principles of Programming Language.

230–241.

LUEH, G. AND GROSS, T. 1997. Call-cost directed register allocation. In Proceedings of the SIG-
PLAN’97 Conference on Programming Language Design and Implementation. 296–307.

SETTLE, A., CONNORS, D., HOFLEHNER, G., AND LAVERY, D. 2003. Optimization for the intel itanium

architecture register stack. In Proceedings of the International Symposium on Code Generation
and Optimization. 115–124.

STEENKISTE, P. AND HENESSY, J. 1989. A simple interprocedural register allocation algorithm and

its effectiveness for list. ACM Transactions on Programming Languages and Systems 11, 1, 1–30.

WALL, D. 1986. Global register allocation at link time. In Proceedings of the SIGPLAN’86 Sym-
posium on Compiler Construction. 264–275.

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

114 • Y. Choi and H. Han

WEAVER, D. AND GERMOND, T. 1994. The SPARC Architecture Manual. SPARC International Inc.,

Menlo Park, CA.

WELDON, R., CHANG, S., WANG, H., HOFLEHNER, G., WANG, P., LAVERY, D., AND SHEN, J. 2002. Quanti-

tative evaluation of the register stack engine and optimization for future itanium processors. In

Proceedings of the Sixth Workshop on Interaction between Compilers and Computer Architectures.

Boston.

YANG, L., CHAN, S., GAO, G., JU, R., LUEH, G., AND ZHANG, Z. 2003. Inter-procedural stacked register

allocation for itanium like architecture. In Proceedings of the 17th International Conference on
Supercomputing. 215–225.

Received November 2005; revised January 2006; accepted February 2006

ACM Transactions on Architecture and Code Optimization, Vol. 3, No. 1, March 2006.

